Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 1, 7 - 13, 15.04.2019

Abstract

References

  • 1. Aprajeeta, J., Gopirajah, R., Anandharamakrishnan, C. Shrinkage and Porosity Effects on Heat and Mass Transfer During Potato Drying, 2015. Journal of Food Engineering, 144:119-128.
  • 2. Perussello, C.A., Kumar, C., Castilhos, F., Karim, M.A. Heat and Mass Transfer Modelling of the Osmo-convective Drying of Yacon Roots (Smallanthus sonchifolius), 2014.Applied Thermal Engineering, 63:23-32.
  • 3. Agrawal, S., Methekar, R.N. Mathematical Model for Heat and Mass Transfer During Convective Drying of Zucchini. Food and Bioproducts Processing, 2017. 101:68-73.
  • 4. Zang, M., Bhandari, B., Fang, Z. Handbook of Drying of Vegetables and Vegetable Products. CRC Press, 2017. (ISBN: 9781498753869-CAT#K27375), 538p.
  • 5. Krokida, M. K., Karathanos, V. T., Maroulis, Z.B. and Marinos-Kouris, D. Drying Kinetics Of Some Vegetables. Journal Of Food Engineering, 2003.59: 391-403.
  • 6. Cemeroğlu, B., Karadeniz, F., Özkan, M. Meyve ve Sebze İşleme Teknolojisi, Bölüm: Kurutma Teknolojisi. Gıda Teknolojisi Derneği Yayınları, 200328:541-675.
  • 7. Carlescu, P.M., Arsenoaia, V., Roşca, R., Tenu, I. CFD Simulation of Heat and Mass Transfer During Apricots Drying. LWT-Food Science and Technology, 2017. 85:479-486.
  • 8. Akpinar, E.K., Bicer, Y. Modelling of the drying of eggplants inthin-layers. International Journal of Food Science and Technology, 2006 40 (3), 273–281.
  • 9. Midilli, A., Küçük, H., Yapar, Z. Single. Layer Drying. Drying Technology, 2002 20(7):1503-1515.
  • 10. Panchariya, P.C., Popovic, D. and Sharma, A.L. Thin-Layer Modeling of Black Tea Drying Process. Journal of Food Engineering, 2002. 52:349-357.
  • 11. Özdemir, O., Devres, Y.O. The Thin Layer Drying Characteristics of Hazelnuts During Roasting. Journal Of Food Engineering, ,1999 42:225-233.
  • 12. Younis, M., Abdelkarim, D., El-Abdein, A. Kinetics and Mathematical Modeling of Infrared Thin-Layer Drying of Garlic Slices. Saudi Journal of Biological Sciences, 201825: 332-338.
  • 13. Ruhanian, S., Movagharnejad, K. Mathematical Modeling and Experimental of Potato Thin -Layer Drying in an İnfrared -Convective Dryer. Engineering in Agriculture, Environment and Food, 2016. 9, 84-91.
  • 14. Rabha, D.K., Muthukumar, P., Somayaji, C. Experimental İnvestigation of Thin Layer Drying Kinetics Of Ghost Chilli Pepper (Capsicum Chinense Jacq). Dried in A Forced Convection Solar Tunnnel Dryer. Renewable Energy. 2017. 105:583-589.
  • 15. Silva, W.P.,Silva, C.M.D.P.S.,Gama, F.J.A., Gomes, J.P. 2014. Mathematical Models to Describe Thin-Layer Drying and to Determine Drying Rate of Whole Bananas. Journal of the Saudi Society Of Agricultural Sciences, 2014. 13:67-74.
  • 16. Aregbesola, O.A., Ogunsina, B.S., Sofolahan, A.E., Chime, N.N. Mathematical Modeling Of Thin Layer Drying Characteristics Of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal, 2015. 33, 83-89.
  • 17. Hasan, A.A.M., Bala, B.K., Rowshon, M.K. Thin Layer Drying of Hybrid Rice Seed. Engineering in Agriculture, Environment and Food, 2014 7:169-175.
  • 18. Alibaş, İ. Sıcak Havayla Kurutulan Enginar (Cynara cardunculus L. Var. Scolymus) Dilimlerinin Kuruma Eğrilerinin Tanımlanmasında Yeni Bir Modelin Geliştirilmesi ve Mevcut Modellerle Kıyaslanması. U. Ü. Ziraat Fakültesi Dergisi, Cilt, 2012. 26, sayı 1, 49.
  • 19. Lee, H.J., Kim, J.H. Drying Kinetics Of Onion Slices In A Hot –Air Dryer. Journal Of Food Science And Nutrition, 2008. 13:225-230.
  • 20. Kaya, A., Aydın, O. Drying Kinetics of Red Delicious Apple. Biosystems Engineering, 2007. 96(4):517 -524.
  • 21. Erentürk, S., Gulaboglu, M.S., Gültekin, S. The Thin Layer Drying Characteristics Of Rosehip. Biosystems Engineering, 2004. 89(2), 159-166.
  • 22. Aghbashlo, M., Kianmehr, M.H., Arabhosseini, A. Modelling of Thin Layer Of Potato Slices In Length of Continous Band Dryer. Energy Conversation An Management, 2009. 50, 1348-1355.
  • 23. Singh, N. J., Pandey, R.K. Convective Air Drying Characteristics Of Sweet Potato, Food and Bioproducts Processing, 2012. 90:317-322.
  • 24. Toğrul, İ., Pehlivan, D. Modelling of Drying Kinetics Of Single Apricot. Journal Of Food Engineering, 2003. 58:23 32.
  • 25. Evin, D. Thin Layer Drying Kinetics Of Gundelia tournefortii L. Food And Bioproduct Processing, 2012. 90:323-332.
  • 26. Babalis, S., Papanicolaou, E., Kyriakis, N., Belessiotis, V. Evaluation Of Thin Layer Drying Models For Describing Drying Kinetics Of Figs. Journal Of Food Engineering, 2006. 75, 205-214.
  • 27. Karathanos, V.T. Determination Of Water Content Of Dried Fruits By Drying Kinetics. Journa Of Food Engineering, 1999. 39,337-344.
  • 28. Tunde-Akintunde, Y. Ajala, A. Air Drying Characteristics Of Chilli Pepper. International Journal of Food Engineering, 2010. 58: 2, 13-32.
  • 29. Sarsavadia, P. N., Sawhney, R. L., Pangavhane, D. R., & Singh, S. P. Drying behaviour of brined onion slices. Journal of Food Engineering, 1999 40, 219–226.
  • 30. Arıcı R. Ç., Mengeş, O. Mantarın (Agaricus Bisporus) Kontrollü Sartlar Altında Kurutma Karakteristiklerinin Belirlenmesi Ve Kuruma Davranışının Modellenmesi. Selçuk Üniversitesi, Selçuk Tarım Ve Gıda Bilimleri Dergisi, 2012. 26(1): 84-91.

Convective hot airdrying characteristics of selected vegetables

Year 2019, Volume: 3 Issue: 1, 7 - 13, 15.04.2019

Abstract

The
objectives of the present work were to investigate and to model the convective
hot air-drying characteristics of carrot, zucchini and eggplant at different
drying air temperatures (60, 70 and 80 oC). Drying characteristics
were determined by the plot of moisture loss of samples versus drying time in
10 min intervals for each drying air temperatures. The experimental moisture
data were then fitted to selected thin layer drying models available in the
literature, namely Henderson and Pabis, Newton and the two-term models and good
agreements between experimental and predicted values of moisture contents were
observed (R2>0.98). Results showed that all drying took place in
falling rate period for all samples at all drying air temperatures studied.
Increase in drying air temperature from 60 oC to 80 oC
resulted in a decrease of total drying time 35%, 45% and 50% for carrot,
zucchini and eggplant respectively. Drying rate constants (a, b, k, k0
and k1) increased with the increasing drying air temperature.
Comparison between experimental and predicted values of moisture content versus
drying air temperature indicated that the most suitable models for carrot,
zucchini and eggplant drying were two-term, Henderson and Pabis and Newton
respectively at 60 oC, two-term, Henderson and Pabis and Newton
model at 70 oC and two-term, Henderson and Pabis and Newton model at
80 oC drying air temperature respectively.

References

  • 1. Aprajeeta, J., Gopirajah, R., Anandharamakrishnan, C. Shrinkage and Porosity Effects on Heat and Mass Transfer During Potato Drying, 2015. Journal of Food Engineering, 144:119-128.
  • 2. Perussello, C.A., Kumar, C., Castilhos, F., Karim, M.A. Heat and Mass Transfer Modelling of the Osmo-convective Drying of Yacon Roots (Smallanthus sonchifolius), 2014.Applied Thermal Engineering, 63:23-32.
  • 3. Agrawal, S., Methekar, R.N. Mathematical Model for Heat and Mass Transfer During Convective Drying of Zucchini. Food and Bioproducts Processing, 2017. 101:68-73.
  • 4. Zang, M., Bhandari, B., Fang, Z. Handbook of Drying of Vegetables and Vegetable Products. CRC Press, 2017. (ISBN: 9781498753869-CAT#K27375), 538p.
  • 5. Krokida, M. K., Karathanos, V. T., Maroulis, Z.B. and Marinos-Kouris, D. Drying Kinetics Of Some Vegetables. Journal Of Food Engineering, 2003.59: 391-403.
  • 6. Cemeroğlu, B., Karadeniz, F., Özkan, M. Meyve ve Sebze İşleme Teknolojisi, Bölüm: Kurutma Teknolojisi. Gıda Teknolojisi Derneği Yayınları, 200328:541-675.
  • 7. Carlescu, P.M., Arsenoaia, V., Roşca, R., Tenu, I. CFD Simulation of Heat and Mass Transfer During Apricots Drying. LWT-Food Science and Technology, 2017. 85:479-486.
  • 8. Akpinar, E.K., Bicer, Y. Modelling of the drying of eggplants inthin-layers. International Journal of Food Science and Technology, 2006 40 (3), 273–281.
  • 9. Midilli, A., Küçük, H., Yapar, Z. Single. Layer Drying. Drying Technology, 2002 20(7):1503-1515.
  • 10. Panchariya, P.C., Popovic, D. and Sharma, A.L. Thin-Layer Modeling of Black Tea Drying Process. Journal of Food Engineering, 2002. 52:349-357.
  • 11. Özdemir, O., Devres, Y.O. The Thin Layer Drying Characteristics of Hazelnuts During Roasting. Journal Of Food Engineering, ,1999 42:225-233.
  • 12. Younis, M., Abdelkarim, D., El-Abdein, A. Kinetics and Mathematical Modeling of Infrared Thin-Layer Drying of Garlic Slices. Saudi Journal of Biological Sciences, 201825: 332-338.
  • 13. Ruhanian, S., Movagharnejad, K. Mathematical Modeling and Experimental of Potato Thin -Layer Drying in an İnfrared -Convective Dryer. Engineering in Agriculture, Environment and Food, 2016. 9, 84-91.
  • 14. Rabha, D.K., Muthukumar, P., Somayaji, C. Experimental İnvestigation of Thin Layer Drying Kinetics Of Ghost Chilli Pepper (Capsicum Chinense Jacq). Dried in A Forced Convection Solar Tunnnel Dryer. Renewable Energy. 2017. 105:583-589.
  • 15. Silva, W.P.,Silva, C.M.D.P.S.,Gama, F.J.A., Gomes, J.P. 2014. Mathematical Models to Describe Thin-Layer Drying and to Determine Drying Rate of Whole Bananas. Journal of the Saudi Society Of Agricultural Sciences, 2014. 13:67-74.
  • 16. Aregbesola, O.A., Ogunsina, B.S., Sofolahan, A.E., Chime, N.N. Mathematical Modeling Of Thin Layer Drying Characteristics Of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal, 2015. 33, 83-89.
  • 17. Hasan, A.A.M., Bala, B.K., Rowshon, M.K. Thin Layer Drying of Hybrid Rice Seed. Engineering in Agriculture, Environment and Food, 2014 7:169-175.
  • 18. Alibaş, İ. Sıcak Havayla Kurutulan Enginar (Cynara cardunculus L. Var. Scolymus) Dilimlerinin Kuruma Eğrilerinin Tanımlanmasında Yeni Bir Modelin Geliştirilmesi ve Mevcut Modellerle Kıyaslanması. U. Ü. Ziraat Fakültesi Dergisi, Cilt, 2012. 26, sayı 1, 49.
  • 19. Lee, H.J., Kim, J.H. Drying Kinetics Of Onion Slices In A Hot –Air Dryer. Journal Of Food Science And Nutrition, 2008. 13:225-230.
  • 20. Kaya, A., Aydın, O. Drying Kinetics of Red Delicious Apple. Biosystems Engineering, 2007. 96(4):517 -524.
  • 21. Erentürk, S., Gulaboglu, M.S., Gültekin, S. The Thin Layer Drying Characteristics Of Rosehip. Biosystems Engineering, 2004. 89(2), 159-166.
  • 22. Aghbashlo, M., Kianmehr, M.H., Arabhosseini, A. Modelling of Thin Layer Of Potato Slices In Length of Continous Band Dryer. Energy Conversation An Management, 2009. 50, 1348-1355.
  • 23. Singh, N. J., Pandey, R.K. Convective Air Drying Characteristics Of Sweet Potato, Food and Bioproducts Processing, 2012. 90:317-322.
  • 24. Toğrul, İ., Pehlivan, D. Modelling of Drying Kinetics Of Single Apricot. Journal Of Food Engineering, 2003. 58:23 32.
  • 25. Evin, D. Thin Layer Drying Kinetics Of Gundelia tournefortii L. Food And Bioproduct Processing, 2012. 90:323-332.
  • 26. Babalis, S., Papanicolaou, E., Kyriakis, N., Belessiotis, V. Evaluation Of Thin Layer Drying Models For Describing Drying Kinetics Of Figs. Journal Of Food Engineering, 2006. 75, 205-214.
  • 27. Karathanos, V.T. Determination Of Water Content Of Dried Fruits By Drying Kinetics. Journa Of Food Engineering, 1999. 39,337-344.
  • 28. Tunde-Akintunde, Y. Ajala, A. Air Drying Characteristics Of Chilli Pepper. International Journal of Food Engineering, 2010. 58: 2, 13-32.
  • 29. Sarsavadia, P. N., Sawhney, R. L., Pangavhane, D. R., & Singh, S. P. Drying behaviour of brined onion slices. Journal of Food Engineering, 1999 40, 219–226.
  • 30. Arıcı R. Ç., Mengeş, O. Mantarın (Agaricus Bisporus) Kontrollü Sartlar Altında Kurutma Karakteristiklerinin Belirlenmesi Ve Kuruma Davranışının Modellenmesi. Selçuk Üniversitesi, Selçuk Tarım Ve Gıda Bilimleri Dergisi, 2012. 26(1): 84-91.
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Eda Elgin Kılıç 0000-0002-9887-8377

İnci Çınar This is me 0000-0002-7715-7423

Publication Date April 15, 2019
Submission Date July 31, 2018
Acceptance Date November 27, 2018
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Kılıç, E. E., & Çınar, İ. (2019). Convective hot airdrying characteristics of selected vegetables. International Advanced Researches and Engineering Journal, 3(1), 7-13.
AMA Kılıç EE, Çınar İ. Convective hot airdrying characteristics of selected vegetables. Int. Adv. Res. Eng. J. April 2019;3(1):7-13.
Chicago Kılıç, Eda Elgin, and İnci Çınar. “Convective Hot Airdrying Characteristics of Selected Vegetables”. International Advanced Researches and Engineering Journal 3, no. 1 (April 2019): 7-13.
EndNote Kılıç EE, Çınar İ (April 1, 2019) Convective hot airdrying characteristics of selected vegetables. International Advanced Researches and Engineering Journal 3 1 7–13.
IEEE E. E. Kılıç and İ. Çınar, “Convective hot airdrying characteristics of selected vegetables”, Int. Adv. Res. Eng. J., vol. 3, no. 1, pp. 7–13, 2019.
ISNAD Kılıç, Eda Elgin - Çınar, İnci. “Convective Hot Airdrying Characteristics of Selected Vegetables”. International Advanced Researches and Engineering Journal 3/1 (April 2019), 7-13.
JAMA Kılıç EE, Çınar İ. Convective hot airdrying characteristics of selected vegetables. Int. Adv. Res. Eng. J. 2019;3:7–13.
MLA Kılıç, Eda Elgin and İnci Çınar. “Convective Hot Airdrying Characteristics of Selected Vegetables”. International Advanced Researches and Engineering Journal, vol. 3, no. 1, 2019, pp. 7-13.
Vancouver Kılıç EE, Çınar İ. Convective hot airdrying characteristics of selected vegetables. Int. Adv. Res. Eng. J. 2019;3(1):7-13.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.